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A B S T R A C T
A tight mass–temperature relation, MðrÞ=r ~ TX, is expected in most cosmological models if
clusters of galaxies are homologous and the intracluster gas is in global equilibrium with the
dark matter. We here calibrate this relation using eight clusters with well-defined global
temperatures measured with ASCA and masses inferred from weak and strong gravitational
lensing. The surface lensing masses are deprojected in accordance with N-body simulations
and analytic results. The data are well-fitted by the mass–temperature relation and are
consistent with the empirical normalization found by Evrard et al. (1996) using gas-dynamic
simulations. Thus, there is no discrepancy between lensing and X-ray-derived masses using
this approach. The dispersion around the relation is 27 per cent, entirely dominated by
observational errors. The next generation of X-ray telescopes combined with wide-field HST
imaging could provide a sensitive test of the normalization and intrinsic scatter of the relation,
resulting in a powerful and expedient way of measuring masses of clusters of galaxies. In
addition, as MðrÞ=r (as derived from lensing) is dependent on the cosmological model at high
redshift, the relation represents a new tool for determination of cosmological parameters,
notably the cosmological constant L.
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1 I N T RO D U C T I O N

Clusters of galaxies are the largest gravitationally bound structures
in the Universe and are as such excellent probes of cosmic structure
formation and evolution. The ensemble properties of clusters
expected in various cosmological scenarios can be used to derive
constraints on the power spectrum of the initial density perturba-
tions and on cosmological parameters such as Q0 and L (e.g. Eke,
Cole & Frenk 1996; Bahcall, Fan & Cen 1997; Oukbir & Blanchard
1997; Bartelmann et al. 1998; de Theije, van Kampen & Slijkhuis
1998). On the scales of individual clusters the inferred baryon mass
fraction can be used to constrain Q0 (White et al. 1993; Evrard
1997). In such studies, an important quantity is the total cluster mass
or any observed quantity which is tightly related to the mass.

A promising mass estimator is the mean emission-weighted
temperature, TX, of the hot intracluster medium (ICM) in clusters
of galaxies. Based on numerical simulations, it has been shown that
TX is a better indicator of the total mass of a cluster than any other
optical or X–ray property (Evrard 1990). Recently, Evrard, Metzler
& Navarro (1996, hereafter EMN) and Eke, Navarro & Frenk

(1997) showed that there is a tight relation between the mass of a
cluster and its global X-ray temperature in cosmological gas-
dynamic simulations, irrespective of the state of the cluster (e.g.
not restricted to clusters with a ‘regular’ appearance or ‘isothermal’
clusters) and the assumed cosmological model. In the simulations, it
was found that mass predictions using this method (which only
involve temperatures) are twice as precise as those derived using the
b model (which require the surface brightness distribution in
addition, i.e. more photons and higher spatial resolution). However,
the normalization of the relation hinges on numerical simulations
which may not comprise sufficient detail (EMN; Anninos & Norman
1996). Therefore, it is essential to calibrate this relation from an
observational point of view, by using independent mass estimators.

The purpose of this Letter is to provide a first observational
calibration of the M–TX relation using a relatively ‘clean’ way of
determining independent cluster masses by gravitational lensing.
This technique essentially probes the projected mass along the line
of sight. It is also pointed out that the relation holds the promise of
providing a test of the geometry of the Universe, which is par-
ticularly sensitive to L. Throughout this Letter, however, we
assume a standard homogeneous Einstein–de Sitter Universe with
H0 ¼ 100 h km s¹1 Mpc¹1, h ¼ 0:5, Q0 ¼ 1 and L ¼ 0.
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2 T H E M A S S – T E M P E R AT U R E R E L AT I O N

Navarro, Frenk & White (1997, hereafter NFW) found in their
numerical simulations that the dark matter distribution in present-
day clusters has self-similar density profiles when the radial
coordinate is scaled to the radius containing an overdensity of
d ¼ 200 relative to the critical density. More precisely, defining the
overdensity as

dðrd; zÞ ;
3MdðrdÞ

4prcðzÞr
3
d

; ð1Þ

where rcðzÞ ¼ rc0ð1 þ zÞ3 and rc0 ¼ 3H2
0 =ð8pGÞ, NFW found that

clusters are well-described by the density profile rðxÞ ~ x¹1

ð1 þ cxÞ¹2, where x ¼ r=r200, in any cosmology. The variation in
cð<5–10) with mass, cosmological parameters, and redshift is
small (Cole & Lacey 1996; NFW; Bartelmann et al. 1998; Eke,
Navarro & Frenk 1997) and so clusters form a homologous family
to a good approximation when scaled to a given overdensity.
Optical (Carlberg et al. 1997) and lensing observations (Fischer
& Tyson 1997) seem to support this conclusion.

For a cluster in quasi-equilibrium (Natarajan, Hjorth & van
Kampen 1997) the virial theorem for the dark matter states that
MðrÞ ~ r v2
 �

r . Self-similarity implies that the constant of propor-
tionality depends on the adopted overdensity only. Finally, the
global X-ray temperature is assumed to be proportional to the global
mean velocity dispersion of the dark matter (at any time), i.e.
TX ~ v2
 �

r. For example, this would be the case in the absence of
transient effects and non-gravitational heating or cooling effects. In
the case of equipartition, one would have a universal
b ; mmp v2
 �

r=ðkTÞ ¼ 1. Combining these assumptions (quasi-
equilibrium, self-similarity, proportionality between dark-matter
velocity dispersion and X-ray temperature) leads to a simple scaling
relation between the characteristic mass and radius at a given
overdensity, d, and the global emission-weighted temperature of
the hot X-ray gas,

MdðrdÞ ¼ kdrdTX; ð2Þ

where kd is a constant depending on d. This equation expresses the
structural invariance of clusters under mass and redshift transfor-
mations and does not rely on any particular dark-matter density
profile or the assumption of hydrostatic equilibrium.

Combined with the definition of the overdensity (equation 1), this
expression leads to the mass–temperature relation

Md ¼ k3=2
d

3
4pdrc0

� �1=2 TX

1 þ z

� �3=2

; ð3Þ

or, equivalently, the size-temperature relation

rdð1 þ zÞ ¼ k1=2
d

3
4pdrc0

� �1=2 TX

1 þ z

� �1=2

; ð4Þ

where rdð1 þ zÞ is the comoving angular radius of the cluster.
Rather than trying to compute the prefactor kd from first

principles, EMN used numerical simulations to calibrate these
relations. They found the radius r500 to be a conservative estimate
of the boundary between the virialized region of the clusters and
their outer envelopes. At z ¼ 0:04 using d ¼ 500 they found a
universal prefactor independent of Q0,

M500 ¼ 2:22 × 1015 TX

10 keV

� �3=2

M(: ð5Þ

In the simulations the scatter around this relation was found to be
only 15 per cent compared with 30 per cent when using the b model
to estimate the mass.

Mohr & Evrard (1997) have recently shown that observations of
nearby clusters lead to an intrinsic scatter of 10–15 per cent in the
relation between cluster isophotal size and mean emission-
weighted temperature TX (similarly to equation 4) regardless of
the state of the cluster (merging, cooling flow) thus giving added
support to the existence of a tight mass–temperature relation.

3 L E N S I N G M A S S E S

In order to test and calibrate the mass–temperature relation obser-
vationally we shall use independent masses determined from
gravitational lensing. As lensing masses are given in the literature
as a function of physical radius rather than overdensity, we shall use
equation (2) to express the temperature as a function of MðrÞ=r
instead of Md. Thus the relation we shall test observationally is

MðrÞ

1015 M(

� �
1 Mpc

r

� �
¼ kd

TX

10 keV

� �
: ð6Þ

For an isothermal sphere, MðrÞ ~ r, kd would be a constant inde-
pendent of radius or overdensity. However, given the fact that
clusters are described by more complicated density and temperature
profiles (NFW; EMN), kd varies slightly with d in the range
considered. While an overdensity of ,500 was recommended
(r500 , 1–2 Mpc), EMN provided normalizations for d ¼ 100,
250, 500, 1000 and 2500. Converting these into equivalent values
for kd we find 0.76, 0.91, 1.01, 1.09 and 1.14. These slowly varying
numbers are used to compute kd as a function of d by spline
interpolation.

3.1 Deprojection

Lensing provides the 2D projected (surface) mass, M2DðRÞ (where R
indicates a projected radius), of the cluster. In general the 2D mass
at a given radius is larger than the 3D mass, M3DðrÞ, evaluated at the
same radius (r ¼ R). The best way of obtaining a deprojection
relation for M3D (which is the quantity entering equation 6) is to
study numerical simulations of galaxy clusters, preferably a fair
sample of these. We have used the catalogue of simulated standard
CDM clusters (Q ¼ 1) of van Kampen & Katgert (1997) to find such
a relation (van Kampen, in preparation). As the clusters we shall
study in this Letter are biased towards massive clusters, we selected
only clusters with a total mass within the Abell radius (3 Mpc) of at
least 1015 M(. The deprojection relation M3DðxÞ=M2DðxÞ for these
41 clusters is plotted as a function of dimensionless radius
x ¼ r=r200 in Fig. 1. The scatter in the relation is fairly substantial
at small radii as substructure along the line of sight becomes
important for the projected mass. In an open Q0 ¼ 0:2 CDM
Universe the corresponding curve (not plotted) is 10 per cent
higher because of the smaller influence of substructure.

In Fig. 1 we also plot the deprojection relation of the Hernquist
(1990) and the Brainerd, Blandford & Smail (1996, hereafter BBS)
models, which both have analytic deprojection properties [the BBS
model is the limit of h → ∞ of the Hjorth & Kneib (1998) model].
As the total mass of the NFW model is infinite it is not useful for this
purpose. However, we have made use of the fact that the half-mass
radius in the Hernquist model is roughly equivalent to r200 in the
NFW model for c < 5 (Cole & Lacey 1996). In the outer parts the
Hernquist and BBS models coincide, but in the centre there is a
marked difference between the two curves because of their differing
divergence properties. The Hernquist model, which diverges as
r , r¹1 in the centre, is similar to the NFW profile and
M3DðxÞ=M2DðxÞ → 0 for x → 0, while the BBS model, which has a
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stronger central cusp r , r¹2, tends to the value for the singular
isothermal sphere 2=p < 0:64. This shows that deprojection of 2D
masses at small radii depends sensitively on the exact slope of the
inner cusp of dark matter density profiles (Fukushige & Makino
1997; Moore et al. 1998; Kravtsov et al. 1998). We finally note that
the Hernquist model is in excellent agreement with the numerical
results of the open model.

In this Letter we shall use the relation as a function of proper
radius R to deproject the lensing masses. For this purpose we
introduce a convenient fitting function,

M3D

M2D
ðRÞ ¼ 0:56 tan¹1 R

0:28 Mpc

� �
; ð7Þ

where the coefficients have been determined from a non-linear
least-squares fit up to R ¼ 2 Mpc. We note that if such a deprojec-
tion correction is not applied, lensing (2D) masses will be higher
than X-ray (3D) masses by a factor of 1.5 on average.

4 DATA

We have compiled a list of clusters with well-determined X-ray
temperatures and masses determined independently using gravita-
tional lensing. The data are shown in Table 1.

The X-ray data used here are from a recent compilation of
temperatures of intermediate- and high-redshift clusters observed
by the Advanced Satellite for Cosmology and Astrophysics (ASCA)
(Mushotzky & Scharf 1997). The temperatures were measured in a
uniform way out to a radius of 3–6 arcmin depending on the redshift
of the cluster.

The lensing masses are from various studies of individual
clusters, mostly using the ‘weak lensing’ method pioneered by
Kaiser & Squires (1993), but also from variations in number counts
of background galaxies (Broadhurst, Taylor & Peacock 1995; van
Kampen 1998). We included only clusters with masses determined
out to radii larger than 400 kpc to minimize deprojection and
substructure effects from the central regions of the clusters. One
cluster mass (MS 1358+62) was determined from wide-field HST
imaging. The normalization of the mass of A2163 was adjusted in
comparison with X-ray masses (derived from the b model), i.e. this
mass is not completely independent of the temperature (Squires et
al. 1997).

We show the results for the eight clusters in Fig. 2, in which we
plot M3DðRÞ=R derived from lensing studies as a function of kdTX.
The relation predicted by equation (6) gives an excellent fit to the
data. The best-fitting line has a normalization which is 88 per cent of
that predicted by EMN and the dispersion (rms) about the relation is
27 per cent in mass, somewhat smaller than that expected from the
quoted observational errors alone.

5 D I S C U S S I O N

The observed scatter around the mass–temperature relation (equa-
tion 6) is dominated by observational errors and is consistent with
having no intrinsic scatter. The data thus support the existence of an
M–TX relation as a fairly accurate independent estimator of cluster
masses. It is, however, important to point out that the data set
presented here may be affected by systematic errors in both the
masses and the temperatures. Adopting different data sets could
lead to significant changes in e.g. the normalization of the mass–
temperature relation.

X-ray temperatures of hot clusters are usually uncertain because
of the few photons detected above 8 keV with ASCA, and quoted
errors normally do not incorporate possible systematic errors. Thus,
many compilations (e.g. Sadat, Blanchard & Oukbir 1998) may be
affected by the fact that temperatures often differ from author to
author (Mushotzky & Scharf 1997; Allen 1998; Yamashita 1997)
because of differences in data analysis and use of data from other
satellites (ROSAT, Ginga). For example, Allen (1998) has shown
that cooling flows may bias global temperatures as derived by
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Figure 1. This figure shows M3DðxÞ=M2DðxÞ as a function of x ¼ r=r200 for the
Hernquist (1990) profile (dashed curve) and the model of BBS (dash–dotted
curve). The solid curve is the corresponding mean deprojection factor for
simulated massive clusters in a CDM Q ¼ 1 Universe (see text for details)
and the dotted curves indicate the 1j confidence interval. The corresponding
curve for an open CDM Q0 ¼ 0:2 Universe (not plotted here) lies 10 per cent
higher, in good agreement with the Hernquist model.

Table 1. Observational data on clusters with ASCA temperatures and lensing masses. The temperatures are from Mushotzky & Scharf (1997). The lensing masses
are generally taken from the most recent publication of a given cluster. For the data of Smail et al. (1995) we have assumed an uncertainty of 40 per cent in the
masses and adopted the no evolution model for the redshift distribution of faint background galaxies. For the data of Squires et al. (1996a,b, 1997) we have
estimated the masses inside 210 arcsec. All masses and radii are computed assuming h ¼ 0:5, Q0 ¼ 1 and L ¼ 0.

Cluster z TX R M2DðRÞ M3DðRÞ d kd Reference
(keV) (Mpc) ð1014 M(Þ ð1014 M(Þ

Abell 2218 0.17 7:48þ0:53
¹0:41 0.80 9.461.7 6.561.2 2714 1.14 Squires et al. (1996a)

Abell 1689 0.18 9:02þ0:40
¹0:30 0.48 10.061.8 5.861.1 11057 1.15 Taylor et al. (1998)

Abell 2163 0.20 12:7þ2:0
¹2:0 0.90 13.0610 9.267 2524 1.14 Squires et al. (1997)

Abell 2390 0.23 8:90þ0:97
¹0:77 0.95 1064 7.262.9 1551 1.14 Squires et al. (1996b)

MS 1455.0+2232 0.26 5:45þ0:29
¹0:28 0.45 3.661.4 2.060.8 3859 1.14 Smail et al. (1995)

MS 1358.4+6245 0.33 6:50þ0:68
¹0:64 1.00 4.460.6 3.260.4 468 1.00 Hoekstra et al. (1998)

RX J1347¹1145 0.45 11:37þ1:10
¹0:92 2.00 3468 2766 385 0.98 Fischer & Tyson (1997)

MS 0015.9+1609 0.54 8:0þ1:0
¹1:0 0.60 8.563.4 5.462.2 2355 1.14 Smail et al. (1995)
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Mushotzky & Scharf (1997) downward by about 30 per cent on
average. In this Letter we have used the Mushotzky & Scharf (1997)
data because of the uniformity and simplicity of the analysis and the
possibility of extending it to fainter and higher redshift clusters.

Ground-based lensing data are affected by fairly large seeing
corrections. HST results are therefore preferable but usually only
available inside a small radius. The normalization of weak-lensing
masses (owing to the mass-sheet degeneracy) can be carried in
various ways, using e.g. multiple arcs, magnification bias, fits of
analytic models or comparison with X-ray profiles. Sadat et al.
(1998) found that a normalization of kd about 64 per cent of the
EMN value (no deprojection was applied) was consistent with
the temperatures and masses of five HST clusters studied out to
400kpc by Smail et al. (1997). Such a small normalization would
imply that the data presented here have systematically overesti-
mated masses or underestimated temperatures. The high-quality
HST data point for MS 1358+62 may indicate that ground-based
masses are indeed overestimated. However, the mass of MS
1358+62 as derived from weak lensing could also be underesti-
mated e.g. due to deprojection errors arising because of the high
ellipticity of the cluster. Such an underestimate of the 3D mass is
supported by the disagreement between the velocity dispersion
derived from weak lensing (780 6 50 km s¹1) and that found from
direct spectroscopic measurements, as well as from strong lensing
(,1000 km s¹1) (Hoekstra et al. 1998). HST clusters may also have
underestimated masses, because of the fact that a fit of an isothermal
sphere to the mean tangential shear inside a small radius (Smail et
al. 1997) in general biases masses low (van Kampen & Hjorth, in
preparation).

It is a long-standing discussion whether masses determined from
lensing agree with or exceed X-ray masses determined using the b

model (see e.g. Smail et al. 1997; Allen 1998). If we take the results
presented in Fig. 2 at face value, the good agreement between the
EMN normalization and the observational calibration indicates that
there is no such discrepancy when using the mass–temperature
relation. If anything the X-ray masses computed using the EMN
normalization are slightly higher (by ,10–20 per cent; cf. Fig. 2
and MS 1358+62) than lensing masses. Such an effect would be

consistent with the predictions of simulations incorporating the
effects of galactic winds (Metzler & Evrard 1998) which contribute
to heating the ICM.

Besides its use as a straightforward mass estimator for any cluster
with a well-determined global temperature, the mass–temperature
relation holds the promise of becoming an important cosmological
tool, bearing a resemblance to the Fundamental Plane or Tully–
Fisher scaling relation for elliptical or spiral galaxies, respectively,
in that it relies on simple scaling relations with 10–20 per cent
scatter, but presumably involves much smaller evolutionary correc-
tions. A direct cosmological application of the M–TX relation
would be to examine the inferred deviations from it as a function
of redshift. A possible trend with redshift could be indicative of (i)
evolutionary effects, (ii) the assumed redshift distribution of the
faint background galaxies, NðzÞ, or (iii) the parameters entering the
assumed cosmological model.

Typical evolutionary effects could be non-gravitational heating
or cooling of the ICM, such as effects of feedback mechanisms like
galactic winds which introduce systematic structural changes of the
ICM (Metzler & Evrard 1998) or cooling flows (Allen 1998).
Possible ‘outliers’ from the relation could be due to e.g. merging
clusters with a very unsettled temperature distribution (Schindler
1996) or highly elongated clusters which give large deprojection
uncertainties depending on the viewing angle.

While the inferred lensing masses of low- and intermediate-
redshift clusters are fairly insensitive to the assumed median red-
shift of the background galaxies, high-redshift clusters are very
sensitive to the assumed median redshift (Smail et al. 1995;
Luppino & Kaiser 1997) and so deviations from the expected
relation at high redshift could be used to constrain NðzÞ.

Finally, the world model enters through the derived masses and
sizes via the expression for the angular diameter distance. In the
simplest form, TX ~ DS=DLS, where TX is a directly measurable
intrinsic quantity and DS=DLS is the ratio between the source and
lens–source angular diameter distances. Thus, the method can be
used as a test for the geometry of the Universe, which is less
sensitive to inhomogeneities along the line of sight than small
standard rods/candles (e.g. SN Ia) (Hadrović & Binney 1997).
Individual massive high-redshift clusters could therefore be fairly
unbiased discriminators between different cosmological models,
particularly sensitive to the cosmological constant L. At z ¼ 1 the
difference between a ðQ0;QLÞ ¼ ð1; 0Þ and a ðQ0;QLÞ ¼ ð0:2; 0:8Þ

Universe is 25 per cent in DS=DLS. Moreover, if the measurement of
the global X-ray temperature is supplemented with spatially
resolved X-ray imagery additional constraints on Q0 can be derived
(Sasaki 1996; Pen 1997).

6 C O N C L U S I O N

Based on numerical simulations (EMN; Eke et al. 1997) and
observations of nearby clusters (Mohr & Evrard 1997) the existence
of a tight mass–temperature relation has been suggested. The
results presented here provide support for this assertion and indicate
that the mass–temperature relation (equation 6) can be used to
determine cluster masses with a precision of 27 per cent (Fig. 2).
There seems to be no significant discrepancy between deprojected
lensing masses and masses derived from X-ray temperatures, using
the normalization found in numerical simulations (EMN).

The origin of this tight relation is believed to be the fairly simple
physics entering the relation (cf. Section 2), namely virialization of
gravitationally bound structures with self-similar dark matter den-
sity distributions that are in global quasi-equilibrium with the hot
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Figure 2. This figure shows the M3DðRÞ=R–TX relation for lensing clusters of
galaxies. Filled circles are ground-based data, the open diamond is the HST
data point of MS 1358+62 and the open triangle is A2163. The error bars do
not include deprojection errors. The solid line is the relation predicted by
equation (6) as normalized by EMN and has not been fitted to the data. The
dashed line minimizes the mean relative residual and has a normalization 12
per cent lower.
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ICM, independent of the chosen world model, power spectrum or
exact formation redshift of the cluster.

We have cautioned that the observational data discussed in this
Letter are quite uncertain and possibly affected by systematic
errors. The results should therefore only be taken as an indication
of a tight mass–temperature relation. However, the future observa-
tional situation is promising. A sample of clusters with very precise
lensing masses (e.g. from wide-field HST imaging with the ACS) to
about 10 per cent or better (e.g. Natarajan et al. 1998; Hoekstra et al.
1998) and equally accurate temperatures (e.g. with AXAF, Spec-
trum–XG or XMM) would allow us to study the intrinsic scatter of
the relation and determine a precise normalization. This could
provide a direct and reliable mass estimator for distant clusters
with important cosmological implications.
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